Leviton

Machine Learning for Algorithmic Trading: Predictive models to extract signals

Description: Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python 2nd ed. Edition Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook DescriptionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models.This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research.This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples.By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek s high-quality trades and quotes dataWho this book is forIf you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.Table of ContentsMachine Learning for Trading - From Idea to ExecutionMarket and Fundamental Data - Sources and TechniquesAlternative Data for Finance - Categories and Use CasesFinancial Feature Engineering - How to Research Alpha FactorsPortfolio Optimization and Performance EvaluationThe Machine Learning ProcessLinear Models - From Risk Factors to Return ForecastsThe ML4T Workflow - From Model to Strategy Backtesting

Price: 30 USD

Location: Rosharon, Texas

End Time: 2024-11-01T21:32:46.000Z

Shipping Cost: 5.38 USD

Product Images

Machine Learning for Algorithmic Trading: Predictive models to extract signals

Item Specifics

Restocking Fee: No

Return shipping will be paid by: Buyer

All returns accepted: Returns Accepted

Item must be returned within: 30 Days

Refund will be given as: Money Back

Type: Textbook

Format: Trade Paperback

Publication Name: Packt

Author: stefan jansen

Publisher: packt

Subject: Computer Science, Finance, Trade, fiancne

Recommended

Machine Learning for Absolute Beginners : A Plain English Introdu
Machine Learning for Absolute Beginners : A Plain English Introdu

$10.56

View Details
Probabilistic Machine Learning: Advanced Topics (Adaptive Computation and Machin
Probabilistic Machine Learning: Advanced Topics (Adaptive Computation and Machin

$148.77

View Details
Machine Learning with PyTorch and Scikit-Learn: Develop machine lea - ACCEPTABLE
Machine Learning with PyTorch and Scikit-Learn: Develop machine lea - ACCEPTABLE

$34.43

View Details
Artificial Intelligence (McGraw-Hill series in artificial i - VERY GOOD
Artificial Intelligence (McGraw-Hill series in artificial i - VERY GOOD

$4.39

View Details
2022 Machine Learning & Knowledge Discovery In Databases Part 4
2022 Machine Learning & Knowledge Discovery In Databases Part 4

$39.99

View Details
Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine
Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine

$60.66

View Details
Machine Learning with SAS: Special Collection
Machine Learning with SAS: Special Collection

$15.39

View Details
Machine Learning for Business Analytics: Concepts, Techniques, and Applications
Machine Learning for Business Analytics: Concepts, Techniques, and Applications

$59.99

View Details
Deep Learning by Ian Goodfellow, Yoshua Bengio, Aaron Courville (Hardcover) NEW
Deep Learning by Ian Goodfellow, Yoshua Bengio, Aaron Courville (Hardcover) NEW

$34.48

View Details
Pattern Recognition and Machine Learning (Information Science and Stat - GOOD
Pattern Recognition and Machine Learning (Information Science and Stat - GOOD

$42.72

View Details