Description: Kernel Methods and Machine Learning by S.Y. Kung Estimated delivery 3-12 business days Format Hardcover Condition Brand New Description Containing numerous algorithms and major theorems, this step-by-step guide covers the fundamentals of kernel-based learning theory. Including over two hundred problems and real-world examples, it is an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors. Publisher Description Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors. Author Biography S. Y. Kung is a Professor in the Department of Electrical Engineering at Princeton University. His research areas include VLSI array/parallel processors, system modeling and identification, wireless communication, statistical signal processing, multimedia processing, sensor networks, bioinformatics, data mining and machine learning. Details ISBN 110702496X ISBN-13 9781107024960 Title Kernel Methods and Machine Learning Author S.Y. Kung Format Hardcover Year 2014 Pages 572 Publisher Cambridge University Press GE_Item_ID:80140663; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 136.4 USD
Location: Fairfield, Ohio
End Time: 2024-11-06T04:40:55.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9781107024960
Book Title: Kernel Methods and Machine Learning
Number of Pages: 572 Pages
Language: English
Publication Name: Kernel Methods and Machine Learning
Publisher: Cambridge University Press
Subject: Computer Vision & Pattern Recognition
Item Height: 1.1 in
Publication Year: 2014
Item Weight: 47.6 Oz
Type: Textbook
Subject Area: Computers
Author: S. Y. Kung
Item Length: 9.9 in
Item Width: 6.9 in
Format: Hardcover